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Polymer @-point as a knot delocalization transition
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We study numerically the tightness of prime flat knots in a model of self-attracting polymers with excluded
volume. We find that these knots are localized in the high temperature swollen regime, but become delocalized
in the low temperature globular phase. Precisely at the collapse transition, the knots are weakly localized. Some
of our results can be interpreted in terms of the theory of polymer networks, which allows one to conjecture
exact exponents for the knot length probability distributions.
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The presence of knots in single-ring macromolecules, othe knots, is difficult to define and to measure. However,
of chain entanglement in polymer melts, has fundamentalinder suitable conditions this is not true for knots in ring
consequences at the physical, chemical, and biological leveholymers that are fully adsorbed on a pldi®]. The con-

For example, the dynamics of a ring polymer in a gel de-figurations of such rings would be similar to the planar pro-
pends crucially on its topologjl]. The replication and the jections on which the knot theory bases the determination of
transcription of circular DNA are controlled by enzymes af- topological invariant§11], and are called flat knots. If ad-
fecting the topology, the topoisomerasgd. Knots have sorption is induced by a very strong short-range or contact
even been identified in some proteins in their native §tte  potential, overlaps of the polymer with itself are strongly
It is easy to imagine the importance that the degree of localdisfavored energetically, so that the equilibrium configura-
ization of knots can have. In the folding of a protein it musttions always show the minimum number of crossings com-
make quite a difference whether the knot is tight and localatible with the knot topology. Below we always assume
ized within a restricted region of the backbone or not. Asuch a strong adsorption. So, for example, in the case of a
loose knot poses less restrictions to the exploration of contrefoil knot (3;), each configuration will consist of three
figuration space in the search for the native state. Similarlypverlap crossings suitably connected by six arcs. In Re.

one could expect that the degree of knot localization carit was shown that for a ring of length with only excluded
strongly influence the function of topoisomerases. volume there is typically one of the arcs whose length is of

These examples all concern heteropolymers in nonequierder L, whereas the total length of all the other arts,
librium situations. Here we investigate the interplay betweerwhich can be considered as the size of the knot, is much
topology and temperature in a simpler context by studyingsmaller:|<L. More precisely(l), the average value df
the equilibrium properties of(prime) knots inhomopolymers was found not to diverge with. In this case one says that
when these are cooled below théitemperature. Under such the knot is localized. If in contrast))~L", one speaks of
conditions we find that knots definitely lose their usual prop-weak localization (8<t<<1) or delocalization {=1) of the
erty of being localized within restricted portions of the knot.
chains. In the present paper, we investigate the size of flat knots

It is very difficult to include topological constraints within of polymers with excluded volume and attractive self-
a statistical mechanical description of a polymer, since theynteractions as a function of temperatdreUnder these cir-
imply a global control of its conformatiori#]. So far, most cumstances the polymer will undergo a collapse transition
works have concentrated on the probability of occurrence ofrom a coil to a globule shape belowéapoint temperature
knots [5] and much less has been done on the physicallyT, [13]. Our main result is that in the collapsed phase knots
relevant problem of precisely quantifying the knot size. Be-are delocalised. At th@ point, we find them to be weakly
sides attempts to measure knot size direfdlly most studies localized witht=23/7.
have given only indirect and often incomplete information A model for flat knots can be defingd4] on the square
on knot localization. For a ring polymer with excluded vol- lattice whose set of edges is extended with the diagonals of
ume it was found numerically that the presence of a primehe squares. The bonds of the polymer can visit each edge
knot leads to a simple multiplication of the partition sum and each vertex of this extended lattice at most once. A di-
with a factor proportional to the length of the macromol- agonal can only be occupied if at the same time the other,
ecule[7]. Moreover, for the relation between the radius of perpendicular diagonal within the same elementary square is
gyration andL [Eq(1)], evidence was given that neither the also occupied. Each pair of occupied diagonals represents a
amplitudeA [8] nor the critical exponent depends on the crossing(not to be considered as a lattice vejtexthe pro-
topology[8,9]. These results suggest that knots are somehoyection of the knot. Thus, one has to further specify which of
localized within small portions of the chain. Unfortunately, the two diagonal bonds goes under the other one. The model
the length of such portions, to be considered as the size @ simulated within the grand canonical ensemble, where a
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I:I_:I FIG. 2. Log-log plot 0f(R§)L as a function ot for a ring with
trefoil knot. From top to bottom: T/=0,0.50,0.67¢&1/T,),0.8.

FIG. 1. Typical configuration of a polymer with a trefoil knot in The dot-dashed, the _dashed, and the dotted lines have slopes 3/2,
the low T collapsed phase. 8/7, and 1.0, respectively.

In order to characterize the tightness of the trefoil knot,
'we consider all its six arcs and determine the statistics of

consistent with the topology. As usual, to indugeollapse, heir lengthsly<I,=---<ls. Clearly the largest arc must
we associate an attractive energy with each pair of Iattic@lw":lys h?ve ahlenfgtrk]] proportlonlal toln Fig. 3! we plot the
vertices that is visited by nonconsecutive bonds. Fig. JTa"e"?‘ge ength of the second largest arc, (B, as a
shows a configuration with the topology of a trefoil. unction of L. For highT's, we see thalls), saturates at

In our Monte Carlo approach, a Markov process in theIarge enough.. Moreover, all the other arc lengths remain

configuration space of the polymer is constructed by a com.[nUCh smaller, typiqally only a fevy bonds.. We conclude that
g b poly y the swollen regime the knot is localized. The quantity

bination of local and nonlocal moves. These are chosen as | o
Ref.[14] and are such as to ensure invariance of the polymef /L /L ={(Zi~11))L/L approaches zero Whem—’fc' _
topology. Averages at fixed are then calculated using a t Ty, we find instead thatls) grows asL’, with t
multiple Markov chainMMC) implementation in the fugac- =0.44t0.02._AII other lengths remain again very small.
ity K [15]. This guarantees an exhaustive sampling of conThus, the typical shape of the polymer appears to be that of
figurations also at rather low temperatufds]. First, we @ figure eight, as found also with excluded volume diig].
obtain precise estimates KE(T), the critical fugacity above We thus conclude that the knot is weakly localized at ¢he
which the grand canonical average)=cc. Since for the POINt. _ _ _ _

case of a flat trefoil, there are always only three pairs of Finally, and most interestingly, we find that in the col-
diagonals occupied, we can expect tigtis very close to

the value of an interacting self-avoiding ring model without
crossings. To verify this, we investigated the average squared
radius of gyration Ré),_ [17] as a function ot for this case.
Figure 2 reports our results for differefits. One expects 45 ¢
that asymptotically

fugacity K is assigned to each bond of the ring polymer
while the number of crossings is constrained to the minimu
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Our data clearly show the expected three regimes. At high
T's, we are in a self-avoiding walk regime with=3/4. At 25t
low T's we determine an exponent=0.49+.02, consistent
with the value appropriate for a collapsed polymes 1/2.

Finally, close to IT=0.67 we find av in agreement with

that at the# point, i.e., v=4/7 [18]. Hence, we estimate 3 4 5 6 7 8
1/T,=0.67+.02, fully consistent with determinations for un- InL
knotted rings[19]. We also conclude that the exponenat FIG. 3. Log-log plot of(l5), as a function ofL for a trefoil

the ¢ point and in the collapsed phase is not modified byknotted polymer. From bottom to top: Ti#0,0.50,0.67,0.8. The
changing the topology from that of a flat unknot to that of adot-dashed line has a slope 0.44 whereas the dashed line has slope
flat trefoil. 1.0.
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lapsed phase, and fdr values that are sufficiently large, 2
(ls)L~L, implying adelocalizationof the knot. In this case,
there is ample evidence that also the average length of
smaller arcs, such g$,), , starts to grow proportional tb

for still longer polymer lengths. We suspect that in suffi-
ciently long polymers all average arc lengths will become
extensive inL. Thus, a description in terms of a figure eight
breaks down in the collapsed phase.

It is possible to associate a polymer netwdafkwith N
segmentg$20] to each flat knot configuration with the same
number of nonmicroscopic arc length?]. Interest in poly-
mer networks was revived recently by a successful develop-
ment concerning DNA denaturatid@1]. The same type of
approach was subsequently applied in R&2] where it was
found that flat knots with excluded volume are always local-
ized. Our data foif >T, support this conclusion, and more-

over convincingly show that localization is present through- § ; ' ; ' i ! ; ! é — '1 - ; - '3 : L : L : é . ; d g
out the whole high temperature phaseg. 3. Inl
On the basis of a network description, this time wiith 5

teracting polymer segments, it is possible to gain further
insight into some of our results. L& be such a network
with n, vertices of degre& connected byN arcs of total

FIG. 4. Log-log plot ofp(ls). On the left(right), we show our
data at 1T ,~0.67 (1M=0.8). The dashed lines have slopes of
—1.63 and—1.34. Different symbols refer to different canonical

length L. The partition sumZg(ly, ... Iy) of the network  gyerages with L=200(A), L=400 (*), L=600 (+), L
scales a$20,22 =800 (@), andL=1400 ).
Z(l, . .. Iy =Kt mgng('_l, o ’|N1>, ) eight[l4_~_O(1)]. At Ty, wh_erev=£_1/7, Eq.(2) predicts that
In In the partition function of a figure eight network scales as

whereF is a scaling function angg=1—vdL+ Zncoy. L .
Here d is the dimension of space antl is the number of Zg=Kc"(L-1)7""Fg =1/ )
independent loops in the network. The lengths of the network
segments, corresponding to macroscopic knot arcsl,ae  with yg=—12/7. Forl/L—0, this partition sum should in
---=<ly. Finally, the exponentsr, are anomalous dimen- its turn reduce to that of a self-avoiding ring at theooint,
sions associated to theleg vertices of the field theory de- which is known to scale ag~ KC"'L‘Vd. This simple analy-
scribing the polymer in the continuum lim{R0]. In two  sjs[21] then teaches us thétg(x)~x ¢ for x—0, with ¢
dimensions, Coulomb gas methods allow an exact determi=~ — (y,—1+ »d)=11/7~1.57. Hence, fot<L we predict
nation of theo’s. In particular, atT =%, where polymers that
are described by the— 0 limit of a critical O(n) model, one
has o= (2—k)(9k+2)/64 [20]. On the other hand, the Zg~K N L=~ ¢ (4)
point is described by the critical low temperature phase of
the O(n=1) model, for whicho,=(2—k)(2k+1)/42[18].  In Fig. 4 (left) we present our data fq¥(l5), the probability
Finally, following Ref.[23], we assume that the properties of distribution of 5, at T=T,. From Eq.(4) it follows that
the low T regime can be related to those of dense polymersp(ls)~I5°. Afit to this form leads tac=1.63+0.08, con-
which are describped by the lowT phase of the sistent with the above prediction. Finally, we get from Eq.
O(n=0)-model. For this case special care has to be taker4) that(ls), ~L*’, in good agreement with the numerical
and one ends up with a scaling form g, which is slightly ~ estimate(ls), ~L%4*%%2 We expect that=3/7 is an exact
different from Eq(2) [24]. Yet, despite these differences, the result which characterizes the weak localization of the knot
network picture can still be applied to flat knots with, ~ at the @ point.
=(4—k?)/32[24]. At T<T,, an analysis using the results of RE24] can
When in a network one or more arcs become very shortstill be made for a ring with the shape of a figure eight, and
and hence the crossings on which they are incident approadeads to the predictiom=11/8. In Fig. 4(right), we also
each other very closely, the network should be replaced bghow our data fop(ls) at 1/T=0.8>1/T,. There is indeed
another contracted one with fewer segments and crossingan initial power law decay with an exponent 113@.12. But
and a differenty;. In this way, it can be understood that in this casep(ls) flattens for largets values and it is this
even though any projection of a trefoil contains six arcs, at @roadening which eventually leads to the delocalization of
more coarse grained level, the typical contribution appearinghe knot. The preasymptotic slope indicates that for relatively
in a numerical simulation can come from a network with smallls, the weakly localized figure eight network configu-
fewer crossings. This is what happens, for example, apithe rations are still dominating the partition sum. Whég),_
point, where we found that the flat trefoil looks like a figure ~L one can get no help from network scaling arguments in
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determiningp(ls). Indeed, such arguments are only valid for localization or enhance delocalization with reference to such

Is<L which is not the relevant range whély), ~L. more general defi_nition df Indeed, preli.minar.y applig:ations
We verified that also for other prime knots, such as the 5 of such computatlonally more expensive criteria _dlrectly to

and 7, [11], the typical network configuration &t=T, is polygons with excluded volume in three dimensions show

. : : o that knots are localized, but only weaKg5]. This is also
still the figure eight and delocalization occurs T, . indicated by studies relating the knot size to the response to

When in our model the number of crossings is not re-applied forces[26]. The localization prevailing in the ex-
stricted to be minimal, characterizing the flat knot size be-cluded volume controlled regime in three dimensions sug-
comes as difficult as for the three-dimensional case. For gests that the delocalization transition found here could also
given configuration, one could then defihas the minimal  hold with unrestricted crossings, and, even more important,
length of an open portion of the ring within which a knot of for the three-dimensional case.
the same type as that of the whole chain can still be detected Financial support from INFM-PAIS 01 and MIUR-
(see Ref[6]). The presence of many crossings could weakerCOFIN 01 is acknowledged.
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