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Polymer u-point as a knot delocalization transition
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We study numerically the tightness of prime flat knots in a model of self-attracting polymers with excluded
volume. We find that these knots are localized in the high temperature swollen regime, but become delocalized
in the low temperature globular phase. Precisely at the collapse transition, the knots are weakly localized. Some
of our results can be interpreted in terms of the theory of polymer networks, which allows one to conjecture
exact exponents for the knot length probability distributions.
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The presence of knots in single-ring macromolecules
of chain entanglement in polymer melts, has fundame
consequences at the physical, chemical, and biological le
For example, the dynamics of a ring polymer in a gel d
pends crucially on its topology@1#. The replication and the
transcription of circular DNA are controlled by enzymes a
fecting the topology, the topoisomerases@2#. Knots have
even been identified in some proteins in their native state@3#.
It is easy to imagine the importance that the degree of lo
ization of knots can have. In the folding of a protein it mu
make quite a difference whether the knot is tight and loc
ized within a restricted region of the backbone or not.
loose knot poses less restrictions to the exploration of c
figuration space in the search for the native state. Simila
one could expect that the degree of knot localization
strongly influence the function of topoisomerases.

These examples all concern heteropolymers in none
librium situations. Here we investigate the interplay betwe
topology and temperature in a simpler context by study
theequilibriumproperties of~prime! knots inhomopolymers
when these are cooled below theiru temperature. Under suc
conditions we find that knots definitely lose their usual pro
erty of being localized within restricted portions of th
chains.

It is very difficult to include topological constraints withi
a statistical mechanical description of a polymer, since t
imply a global control of its conformations@4#. So far, most
works have concentrated on the probability of occurrence
knots @5# and much less has been done on the physic
relevant problem of precisely quantifying the knot size. B
sides attempts to measure knot size directly@6#, most studies
have given only indirect and often incomplete informati
on knot localization. For a ring polymer with excluded vo
ume it was found numerically that the presence of a pri
knot leads to a simple multiplication of the partition su
with a factor proportional to the lengthL of the macromol-
ecule @7#. Moreover, for the relation between the radius
gyration andL @Eq.~1!#, evidence was given that neither th
amplitudeA @8# nor the critical exponentn depends on the
topology@8,9#. These results suggest that knots are someh
localized within small portions of the chain. Unfortunate
the length of such portions, to be considered as the siz
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the knots, is difficult to define and to measure. Howev
under suitable conditions this is not true for knots in ri
polymers that are fully adsorbed on a plane@10#. The con-
figurations of such rings would be similar to the planar p
jections on which the knot theory bases the determination
topological invariants@11#, and are called flat knots. If ad
sorption is induced by a very strong short-range or con
potential, overlaps of the polymer with itself are strong
disfavored energetically, so that the equilibrium configu
tions always show the minimum number of crossings co
patible with the knot topology. Below we always assum
such a strong adsorption. So, for example, in the case
trefoil knot (31), each configuration will consist of thre
overlap crossings suitably connected by six arcs. In Ref.@12#
it was shown that for a ring of lengthL with only excluded
volume there is typically one of the arcs whose length is
order L, whereas the total length of all the other arcs,l,
which can be considered as the size of the knot, is m
smaller: l !L. More precisely,̂ l &, the average value ofl,
was found not to diverge withL. In this case one says tha
the knot is localized. If in contrast,̂l &;Lt, one speaks of
weak localization (0,t,1) or delocalization (t51) of the
knot.

In the present paper, we investigate the size of flat kn
of polymers with excluded volume and attractive se
interactions as a function of temperatureT. Under these cir-
cumstances the polymer will undergo a collapse transit
from a coil to a globule shape below au-point temperature
Tu @13#. Our main result is that in the collapsed phase kn
are delocalised. At theu point, we find them to be weakly
localized witht53/7.

A model for flat knots can be defined@14# on the square
lattice whose set of edges is extended with the diagonal
the squares. The bonds of the polymer can visit each e
and each vertex of this extended lattice at most once. A
agonal can only be occupied if at the same time the ot
perpendicular diagonal within the same elementary squar
also occupied. Each pair of occupied diagonals represen
crossing~not to be considered as a lattice vertex! in the pro-
jection of the knot. Thus, one has to further specify which
the two diagonal bonds goes under the other one. The m
is simulated within the grand canonical ensemble, wher
©2003 The American Physical Society04-1
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fugacity K is assigned to each bond of the ring polym
while the number of crossings is constrained to the minim
consistent with the topology. As usual, to induceu collapse,
we associate an attractive energy with each pair of lat
vertices that is visited by nonconsecutive bonds. Fig
shows a configuration with the topology of a trefoil.

In our Monte Carlo approach, a Markov process in t
configuration space of the polymer is constructed by a co
bination of local and nonlocal moves. These are chosen a
Ref. @14# and are such as to ensure invariance of the poly
topology. Averages at fixedT are then calculated using
multiple Markov chain~MMC! implementation in the fugac
ity K @15#. This guarantees an exhaustive sampling of c
figurations also at rather low temperatures@16#. First, we
obtain precise estimates ofKc(T), the critical fugacity above
which the grand canonical average^L&5`. Since for the
case of a flat trefoil, there are always only three pairs
diagonals occupied, we can expect thatTu is very close to
the value of an interacting self-avoiding ring model witho
crossings. To verify this, we investigated the average squ
radius of gyration̂ Rg

2&L @17# as a function ofL for this case.
Figure 2 reports our results for differentT’s. One expects
that asymptotically

^Rg
2&L;AL2n. ~1!

Our data clearly show the expected three regimes. At h
T’s, we are in a self-avoiding walk regime withn.3/4. At
low T’s we determine an exponentn50.496.02, consistent
with the value appropriate for a collapsed polymer,n51/2.
Finally, close to 1/T50.67 we find an in agreement with
that at theu point, i.e., n54/7 @18#. Hence, we estimate
1/Tu50.676.02, fully consistent with determinations for un
knotted rings@19#. We also conclude that the exponentn at
the u point and in the collapsed phase is not modified
changing the topology from that of a flat unknot to that o
flat trefoil.

FIG. 1. Typical configuration of a polymer with a trefoil knot i
the low T collapsed phase.
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In order to characterize the tightness of the trefoil kn
we consider all its six arcs and determine the statistics
their lengthsl 1< l 2<•••< l 6. Clearly the largest arc mus
always have a length proportional toL. In Fig. 3, we plot the
average length of the second largest arc, i.e.,^ l 5&L , as a
function of L. For high T’s, we see that̂ l 5&L saturates at
large enoughL. Moreover, all the other arc lengths rema
much smaller, typically only a few bonds. We conclude th
in the swollen regime the knot is localized. The quant
^ l &L /L5^(( i 51

5 l i)&L /L approaches zero whenL→`.
At Tu , we find instead that̂ l 5&L grows asLt, with t

50.4460.02. All other lengths remain again very sma
Thus, the typical shape of the polymer appears to be tha
a figure eight, as found also with excluded volume only@12#.
We thus conclude that the knot is weakly localized at theu
point.

Finally, and most interestingly, we find that in the co

FIG. 2. Log-log plot of^Rg
2&L as a function ofL for a ring with

trefoil knot. From top to bottom: 1/T50,0.50,0.67(.1/Tu),0.8.
The dot-dashed, the dashed, and the dotted lines have slopes
8/7, and 1.0, respectively.

FIG. 3. Log-log plot of^ l 5&L as a function ofL for a trefoil
knotted polymer. From bottom to top: 1/T50,0.50,0.67,0.8. The
dot-dashed line has a slope 0.44 whereas the dashed line has
1.0.
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lapsed phase, and forL values that are sufficiently large
^ l 5&L;L, implying adelocalizationof the knot. In this case
there is ample evidence that also the average length
smaller arcs, such aŝl 4&L , starts to grow proportional toL
for still longer polymer lengths. We suspect that in suf
ciently long polymers all average arc lengths will becom
extensive inL. Thus, a description in terms of a figure eig
breaks down in the collapsed phase.

It is possible to associate a polymer networkG with N
segments@20# to each flat knot configuration with the sam
number of nonmicroscopic arc lengths@12#. Interest in poly-
mer networks was revived recently by a successful deve
ment concerning DNA denaturation@21#. The same type of
approach was subsequently applied in Ref.@12# where it was
found that flat knots with excluded volume are always loc
ized. Our data forT.Tu support this conclusion, and more
over convincingly show that localization is present throug
out the whole high temperature phase~Fig. 3!.

On the basis of a network description, this time within-
teracting polymer segments, it is possible to gain furth
insight into some of our results. LetG be such a network
with nk vertices of degreek connected byN arcs of total
length L. The partition sumZG( l 1 , . . . ,l N) of the network
scales as@20,22#

ZG~ l 1 , . . . ,l N!5Kc
2L l N

gG21FGS l 1

l N
, . . . ,

l N21

l N
D , ~2!

whereFG is a scaling function andgG512ndL1(knksk .
Here d is the dimension of space andL is the number of
independent loops in the network. The lengths of the netw
segments, corresponding to macroscopic knot arcs, arel 1<
•••< l N . Finally, the exponentssk are anomalous dimen
sions associated to thek-leg vertices of the field theory de
scribing the polymer in the continuum limit@20#. In two
dimensions, Coulomb gas methods allow an exact dete
nation of thesk’s. In particular, atT5`, where polymers
are described by then→0 limit of a critical O(n) model, one
hassk5(22k)(9k12)/64 @20#. On the other hand, theu
point is described by the critical low temperature phase
the O(n51) model, for whichsk5(22k)(2k11)/42 @18#.
Finally, following Ref.@23#, we assume that the properties
the low T regime can be related to those of dense polym
which are described by the lowT phase of the
O(n50)-model. For this case special care has to be tak
and one ends up with a scaling form forZG , which is slightly
different from Eq.~2! @24#. Yet, despite these differences, th
network picture can still be applied to flat knots withsk
5(42k2)/32 @24#.

When in a network one or more arcs become very sh
and hence the crossings on which they are incident appro
each other very closely, the network should be replaced
another contracted one with fewer segments and cross
and a differentgG . In this way, it can be understood th
even though any projection of a trefoil contains six arcs, a
more coarse grained level, the typical contribution appea
in a numerical simulation can come from a network w
fewer crossings. This is what happens, for example, at thu
point, where we found that the flat trefoil looks like a figu
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eight@ l 4;O(1)#. At Tu , wheren54/7, Eq.~2! predicts that
the partition function of a figure eight network scales as

Z85Kc
2L~L2 l !g821F8S l

L2 l D , ~3!

with g85212/7. For l /L→0, this partition sum should in
its turn reduce to that of a self-avoiding ring at theu point,
which is known to scale asZ;Kc

2LL2nd. This simple analy-
sis @21# then teaches us thatF8(x);x2c for x→0, with c
52(g8211nd)511/7'1.57. Hence, forl !L we predict
that

Z8;Kc
2L~L2 l !2nd l 2c. ~4!

In Fig. 4 ~left! we present our data forp( l 5), the probability
distribution of l 5, at T5Tu . From Eq. ~4! it follows that
p( l 5); l 5

2c . A fit to this form leads toc51.6360.08, con-
sistent with the above prediction. Finally, we get from E
~4! that ^ l 5&L;L3/7, in good agreement with the numeric
estimatê l 5&L;L0.4460.02. We expect thatt53/7 is an exact
result which characterizes the weak localization of the k
at theu point.

At T,Tu , an analysis using the results of Ref.@24# can
still be made for a ring with the shape of a figure eight, a
leads to the predictionc511/8. In Fig. 4 ~right!, we also
show our data forp( l 5) at 1/T50.8.1/Tu . There is indeed
an initial power law decay with an exponent 1.3460.12. But
in this case,p( l 5) flattens for largerl 5 values and it is this
broadening which eventually leads to the delocalization
the knot. The preasymptotic slope indicates that for relativ
small l 5, the weakly localized figure eight network configu
rations are still dominating the partition sum. When^ l 5&L
;L one can get no help from network scaling arguments

FIG. 4. Log-log plot ofp( l 5). On the left~right!, we show our
data at 1/Tu.0.67 (1/T50.8). The dashed lines have slopes o
21.63 and21.34. Different symbols refer to different canonic
averages with L5200(n), L5400 (*), L5600 (1), L
5800 (h), andL51400 (s).
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determiningp( l 5). Indeed, such arguments are only valid f
l 5!L which is not the relevant range when^ l 5&L;L.

We verified that also for other prime knots, such as the1

and 71 @11#, the typical network configuration atT5Tu is
still the figure eight and delocalization occurs forT,Tu .

When in our model the number of crossings is not
stricted to be minimal, characterizing the flat knot size b
comes as difficult as for the three-dimensional case. Fo
given configuration, one could then definel as the minimal
length of an open portion of the ring within which a knot
the same type as that of the whole chain can still be dete
~see Ref.@6#!. The presence of many crossings could weak
et
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localization or enhance delocalization with reference to s
more general definition ofl. Indeed, preliminary application
of such computationally more expensive criteria directly
polygons with excluded volume in three dimensions sh
that knots are localized, but only weakly@25#. This is also
indicated by studies relating the knot size to the respons
applied forces@26#. The localization prevailing in the ex
cluded volume controlled regime in three dimensions s
gests that the delocalization transition found here could a
hold with unrestricted crossings, and, even more importa
for the three-dimensional case.
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